Comparing predictions of a Warm Hot Intergalactic Medium (WHIM) with XMM-Newton observations of the cluster soft excess

Jonathan Mittaz (UAH)

Material T $\sim 10^{5-7}$ K see in models of large scale structure – the Warm Hot Intergalactic Medium (WHIM)

Filaments of material between clusters – contain up to 40% of the baryons in the Universe (e.g. Cen & Ostriker 1999)

Has it been seen?

Perhaps in the cluster soft excess

Cluster soft excess shows characteristics of the WHIM near the 'nodes'

- 1) Thermal emission with $T \sim \text{few } 10^6 \text{ K}$
- 2) Increases in importance on the outskirts of clusters

WHIM also solves some problems with thermal soft excess model.

BUT: Do models give rise to a soft excess?

Preliminary comparison with observations of a simulation from Renyue Cen for z = 0

- •3 data cubes containing temperature, density, abundance
- •Cube volume 25 h⁻¹ Mpc in 768³ cells
- •Parameters $\Omega_{\rm M}$ =0.3, Ω_{Λ} =0.7, $\Omega_{\rm b}$ h²=0.017, h=0.67

Density map from a simulation

Simulation shows wide range of temperatures:

Image shows range 0.08–5.6 keV

Low Temperature structures 0.1-0.4 keV (in purple) – typical temperatures of soft excess

High temperature structure top right – cluster candidate

From simulation we have generated XMM spectra

- 0-2 cells (0-4 arcmin, central 100kpc)
- Best fit temperature : 4.7 keV
- Best fit abundance : 0.5

- •Assumed Galactic $N_H = 9x10^{19}$ cm⁻², z = 0.02
- •Exposure time 50 ksec
- •Added astrophysical background (Lumb et al. 2002)
- •Added noise and spectrum grouped to minimum 25 counts/bin

Single temperature is a very good fit to data

Outer annuli show the same effect

45-49 arcmin (1.17-1.26 Mpc)

Temperature: 2.27 keV

Abundance : 0.29

Temperature: 1.25 keV

Abundance : 0.06

And no evidence for a soft excess!

Comparison with observations

Compare simulation with Coma cluster observations

Coma spectrum 5-13 arcmin (Nevalainen et al. 2002)

Simulated spectrum showing no soft excess

Low temperature component extremely weak

Simulated hot component ~ agreement Simulated warm component much fainter than observations This seems generally to be true:

Compared with $> 1\sigma$ soft excesses observed with ROSAT (Bonamente et al. 2002)

Generally no strong source of soft excess at centre of simulated cluster (max possible fraction explained by model $\sim 30\%$)

CONCLUSION

From studying this one simulation much of the soft excess seen in clusters *cannot* be explained by the currently simulated WHIM filaments. But:

- 1. Note that the soft excess is not seen in all clusters (e.g. 5/14 Kaastra et al. 2003) is there some environmental difference (superclustering Kaastra et al. 2003)?
- 2. Soft excess at or near centre of clusters is strong + weak or absent line emission some other mechanism (non-thermal?).
- 3. Only one structure + one simulation studied in detail need to look at wider range of simulated clusters from different models. Preliminary work suggest same problem exists (D. Nagai private communication + LCA simulated cluster sample). Not enough resolution? Missing physics?

No apparent soft excess seen in one available cluster in the LCA simulated cluster archive

CONCLUSION

From studying this one simulation much of the soft excess seen in clusters *cannot* be explained by model WHIM filaments. But:

- 1. Note that the soft excess is not seen in all clusters (e.g. 5/14 Kaastra et al. 2003) is there some environmental difference (superclustering, Kaastra et al. 2003)?
- 2. Soft excess at or near centre of clusters is strong + weak or absent line emission some other mechanism (non-thermal?).
- 3. Only one structure + one simulation studied in detail need to look at wider range of simulated clusters from different model.
- 4. Constellation-X will have no trouble seeing soft excess, but seeing the WHIM at $z \sim 0$ will be hard according to these simulations.

Simulation of WHIM material. Weak signal in 10⁵ seconds

CONCLUSION

From studying this one simulation much of the soft excess seen in clusters *cannot* be explained by WHIM filaments. But:

- 1. Note that the soft excess is not seen in all clusters (e.g. 5/14 Kaastra et al. 2003) is there some environmental difference or some physical process that is missing from this simulation (superclustering, Kaastra et al. 2003)?
- 2. Soft excess at or near centre of clusters is strong + weak or absent line emission some other mechanism (non-thermal?).
- 3. Only one structure + one simulation studied in detail need to look at wider range of simulated clusters from different model.
- 4. Constellation-X will have no trouble seeing soft excess, but seeing the WHIM at $z \sim 0$ will be hard

Just not enough low temperature material:

Column density of low temperature components is much less than that of the hot component at the cluster